#	POSTER TITLE	PRESENTER	PI(S)			
THRUST 4 - PROCESS SYNTHESIS AND DESIGN, LIFE CYCLE ANALYSIS AND ENVIRONMENTAL IMPACT						
T4P1: Process Synthesis, Economic Evaluation and Modeling of the Components for the Entire CISTAR Process						
1	Co-Storage Of H ₂ and Battery for Decarbonized Liquid Fuel Production Processes with On-Site Renewable Power Plants	Shuaikang Will Du (PU)	Agrawal			
2	Global Optimization of MVR-Heat Pump Assisted Multi-component Distillation Systems	Akash Nogaja (PU)	Agrawal			
T4P9: Synergistic Process Synthesis and Economic Evaluation of Shale and Renewable Resource						
3	Introducing Electric Cracking Towers (E-CRATOS) for Ethylene Production	Edwin Rodríguez (PU)	Agrawal			
T4P	10: Decarbonization of Alkane Dehydrogenation Reactors through Renewable Electric He	ating				
4	Simulation of Steam Methane Reformer for Electrification Through Induction Heating	Yufei Zhao (PU)	Masuku			
T4P	11: Electrified Heat Exchanger Network Design, Synthesis, and Operation					
5	Electrified Heat Exchanger Network Design and Synthesis	Kaiyu Cao (PU)	Can Li			
T4F	P12: Shale Gas Field Development Planning Under Production Profile Uncertainty					
6	Multi-period Shale Gas Field Development Planning Under Production Uncertainty	Zedong Peng (PU)	Neira			
THRUST 7 - SYSTEMS-LEVEL DECARBONIZATION AND ANALYSIS FOR FUELS AND CHEMICALS						
T7P	2: CISTAR Fuel in an Evolving Energy Landscape					
7	Opportunities in Reducing Greenhouse Gas Emissions through Hydrogen Blending in Industrial Process Heating	Qining Wang (NU)	Dunn			
T7P5: Distributed Manufacturing for Electrified Chemical Processes in a Microgrid						
8	Distributed Manufacturing for Electrified Chemical Processes in a Microgrid	Asha Ramanujam (PU)	Can Li			
THR	UST 1 - DEHYDROGENATION					
T1P3	3: Regenerable, Thermally Stable Alkane Dehydrogenation Catalysts					
9	Calcium Additives Enhance Coke Migration and Catalyst Stability for Pt-based Catalysts in Ethane Dehydrogenation	Joanna Rosenberger (PU)	Ch. Li			
10	First Principles Analysis of Coke Formation on Pt-based Catalysts for Propane Dehydrogenation	Yu-Hsiang Cheng (PU)	Greeley			
11	Investigating Side Product Formation in Colloidal Platinum Alloy Synthesis for Stable Catalysis	Nkem Azuka (PU)	Ch. Li			
12	Novel Strategies for Achieving Stability and Regenerability in Pt-Alloy Catalysts for Propane Dehydrogenation	Ryan Alcala (UNM)	Datye			
T1P5: Non-Thermal Plasma-Assisted Alkane Dehydrogenation and Coupling						
13	Use of Kinetic Modeling to Probe the Chemical Opportunities in a Nonthermal Ethane Plasma	Denver Haycock (UND)	Schneider			
14	Low-Temperature Olefin/Liquid Production and Coke Mitigation in Light Alkane Plasmas	Russell Clarke (UND)	Hicks			
THR	UST 2 - OLIGOMERIZATION					
T2P	1: Brønsted Acid-Catalyzed Olefin Oligomerization					
15	Investigating the Influence of Structure-Directing Agents on Aluminum Distribution in MFI Zeolite Catalysts	Sarah Gustafson (PU)	Gounder			
16	Exploring the Origins of Catalytic Diversity Among Acid Zeolites with Varying Local Active Site Environments	Bereket T. Bekele (PU)	Gounder			
17	Assessing the Influence of Brønsted Acid Site Location in MFI Zeolites on Propene Oligomerization Rates and Selectivity	Diamarys Salome Rivera (PU)	Gounder			
18	Effect of Silanol Defects Spatial Distribution on the Diffusivity of Alkanes in MFI Zeolites	Ricem Diaz Arroyo (PU)	Gounder			
19	Investigating the Role of Hydride Transfer During Ethene Oligomerization on H- and Ca-Modifed Zeolites	Bonn Cao (PU)	Gounder			

20	Assessment of Diffusion Properties in MFI Zeolites for Propene Oligomerization Reaction	Kaila Durden (REM, NCAT)*	Gounder				
21	Kinetic Modeling of Ethylene Oligomerization on H-BEA Catalyst	Sai Praneet Batchu (NU)	Broadbelt				
T2P	4: Oligomerization Catalyzed by Transition Metals Based on Non-Zeolites						
22	Understanding Ni Active Site Properties and Stability During Ethene Oligomerization in the Presence of Intrapore Liquids	Christian Borrero Villabol (PU)	Gounder				
23	Computational Comparison of Zeolite and Polyoxometallate Hosts for Ni-Catalyzed Ethylene Oligomerization	Michael Appoh (UND)	Schneider				
24	Single Nickel Sites Isolated on Polyoxometalates for Light Olefin Oligomerization	Alba Scotto d'Apollonia (UND)	Hicks				
T2P	5: Non-Thermal C-C Bond Coupling to Various Products						
25	Decarbonization of Chemicals Production via Electrochemical CO ₂ Coupling with Additives	Xiao Kun Lu and Andrew Weidner (NU)	Seitz				
THR	UST 3 - C1 ACTIVATION						
Т3Р	4: Methane Activation via Electrochemical Methods						
26	Chemical Stability Characterization for Active E-OCM Barium Niobate Perovskites	Luke Denoyer (UNM)	Garzon				
T3P	5: Dehydroaromatization of Light Alkanes						
27	Convert Ethane to Aromatics by PtMn + ZSM-5 Bi-functional Catalyst	Shan Jiang (PU)	Miller				
T3P	6: Methane Dehydroaromatization		1				
28	Structural Evolution of Mo-Zeolites during Methane Dehydroaromatization Reaction-Regeneration Cycles	Ángel Santiago-Colón (PU)	Gounder				
29	Identification and Evolution of Active Sites in Isomorphously Substituted Fe-ZSM-5 Catalysts for Methane Dehydroaromatization (MDA)	Xinrui Zhang (NU)	Notestein, Marks				
30	Non-selective Deactivation of Mo/H-ZSM5 under Methane Dehydroaromatization Conditions	Jordy Ramos-Yataco (NU)	Notestein				
T3P	7: Electrochemical CO ₂ Reduction to Multi-carbon Products using Single Atom Alloys						
31	Integrating Electrocatalytic CO ₂ Reduction into Renewable Energy Systems	Shashwati da Cunha (UTA)	Resasco				
T3P	8: CO ₂ Capture and Electrochemical Reduction in Azolide Ionic Liquids		ı				
32	The Role of Organic Cations for the Electrochemical Reduction of CO ₂ in Aprotic Solvents	Jon-Marc McGregor (UTA)	Resasco, Brennecke				
T3P	9: Carbon-Based Catalysts for Non-Oxidative Coupling of Methane		T				
33	Active Carbon Deposits from Non-Oxidative Coupling of CH4: A First-Principles Analysis	Luke Nunzio Pretzie (PU)	Greeley				
34	Identifying Carbon Structure Effects on Non-oxidative Coupling of Methane Rates and Selectivity	Justin Rosa Rojas (PU)	Gounder				
35	Synthesis of Zeolite-Based Materials for Non-Oxidative Conversion of Methane (NOCM)	Mahagani Lasciers (REM, NCAT)*	Gounder				
TECH	HNOLOGY MODULES						
Rea	ctor Oligomerization Technology Module						
37	High-Conversion Propylene Oligomerization on CISTAR-Developed Catalyst	Evan Sowinski (PU)	Ribeiro				
Rea	ctor Dehydrogenation Technology Module						
38	Propane Dehydrogenation: Comparison of CISTAR Catalysts	Evan Sowinski (PU)	Ribeiro				
THR	THRUST 6 - MEMBRANE SEPARATIONS						
T6P	2: Ceramic/Metal Hybrid Membranes for High Temperature H ₂ Separations						
39	Investigating Silica Films and Coatings for Coke Mitigation in a High Temperature CMR	Isabel Ibarra (UNM)	Brinker				

Г6Р	3: Light Paraffin Separations with Reverse Selective Membranes					
10	Improving the Pressure-Stability of Supported Ionic Liquid Membranes (SILMs) for the Fractionation of Light Paraffins	Justin J. Rosenthal (UTA)	Freeman/ Brennecke			
6P	4: Microporous Polymer Membranes for CISTAR Gas Separations					
11	Microporous Iptycene-based Polybenzoxazole Membranes for H2/Alkane Separations	Agboola Suleiman (UND)	Guo			
T6P6: Ligand Protected Clusters Embedded in Polymer Membranes for Olefin-Paraffin Separation						
2	Aging Mitigation of Amine Modified PIM-1 for Highly Selective Propylene/Propane Separation	Bo Wei Cynthia Chen (UND)	0'Brien			
6P	7: Engineering Tough Polymer Membranes via Sacrificial Bonds					
13	Engineering Mechanically Tough Membranes for Olefin/Paraffin Separations	Tiffany Jeng (UTA)	Sanoja			
:2C	PROJECTS					
20	-1: Electrochemical Conversion of Methane		I			
14	Perovskite Thin Films Deposited via Pulsed Laser Deposition for High Temperature Electrochemical Stability Measurements	Luke Denoyer (UNM)	Garzon, Ferlauto, Fonseca			
C2C-2: Development of In-operando Synchrotron Characterization Tools						
.5	Solid Solution-Derived Active Ruthenium from Lanthanum Chromite for Efficient Ethanol Steam Reforming	Tamara S. Moraes (USP)	Dean, Miller, Ferlauto, Datye, Fonseca			
20	-3: Computational Materials Science to Enhance Stability and Reactivity of Alkane Conve	rsion				
6	Exploring Surface Structures of Pt₃Mn Alloys: A Comprehensive Analysis through Cluster Expansion Methodology	Anik Biswas (PU)	Greeley, Silva			
20	-4: Tandem Conversion of Natural Gas Liquids (NGL) and CO ₂					
17	CO ₂ -assisted Ethane Aromatization over Cobalt-based Catalysts	Jordy Ramos-Yataco (NU)	Notestein Assaf, Alves			
C20	-5: Undersea Separation of CO ₂ from Natural Gas					
8	High Pressure Gas Separation Technology for the Removal of CO₂ from Natural Gas	Mariam Balogun (UTA)	Brenneck			
20	-6: Integrated Process Synthesis and Life Cycle Assessment					
9	Sustainable Aviation Fuels (SAF) from Ethanol: An Integrated Systems Modeling Approach	Madelynn Watson (UND)	Dowling			
20	-7: Conversion of Greenhouse Gases Using Single Atom Catalysts					
0	Ni Single Atom Catalysts for Selective Redox Reactions	Brandon Burnside (UNM)	Datye			