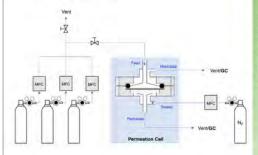
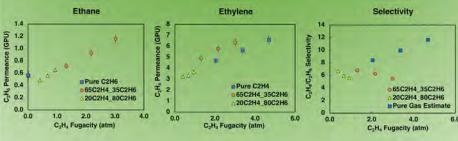
Advanced Membrane Separations Technology Module- POSTER #30


Advanced Membrane Separations Technology Module

Maggie Tanggiumei Song¹, Joan F. Brennecke¹ ¹McKetta Department of Chemical Engineering, University of Texas at Austin

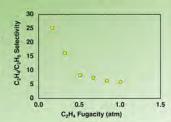
GOALS

 Develop mixed-gas technology module with the ability to test ternary mixtures at any compositions under field conditions.

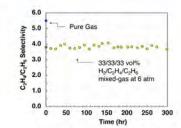


 Provide fast screening capabilities for materials developed by Thrust 6.

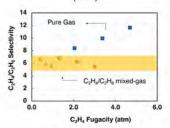
MAIN FINDINGS


C₂H₄/C₂H₆ mixed-gas separation performance in 70% AgTf₂N-PEBAX thin-film composite membrane (University of Texas at Austin, Project T6P1)

- ➤ The TFC has great permeance with a C₂H₄/C₂H₆ mixed-gas selectivity around 6.5.
- C₃H₆/C₃H₈ mixed-gas permeation experiment in progress.

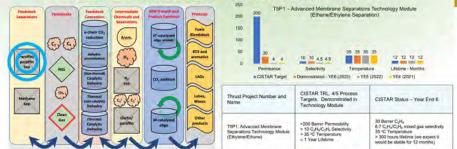


Fast screening capability for potential candidates (University of Texas at Austin, Project T6P1)


> 50/50 C₂H₄/C₂H₆ mixed-gas selectivity in a [emim][Tf₂N] SILM containing 45% AgTf₂N.

OUTCOMES

Demonstrated great hydrogen stability in AgTf2N-XLPEGDA developed at UTA



Demonstrated great mixed-gas C₂H₄/C₂H₆ selectivity in AgTf₂N-TFC developed at UTA

IP & INNOVATION

SYSTEM DESIGN & BENCHMARKS

IMPACT & FUTURE

IMPACTS

- o Enable evaluation of membrane performance using mixed-gas feeds under simplified field conditions.
- The equipment can reliably provide:
 - temperature control between 5° and 250°C
 - 2. pressure control between 1.2 and 30 bar
 - 3. mass flow control between 20 and 1000 sccm

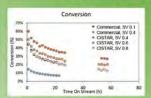
FUTURE WORK

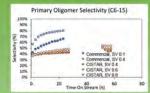
o Olefin/paraffin separation in highly selective thin film composite membrane developed in UTA (Project T6P1).

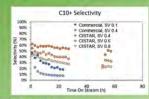
Reactor Oligomerization Technology Module- POSTER #31

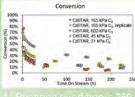
Technology Module – Oligomerization Reactor High-Conversion Propylene Oligomerization on CISTAR-**Developed Catalyst**

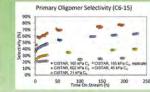
Evan Sowinski, Songhyun Lee, Rajamani Gounder, Fabio Ribeiro Charles D. Davidson School of Chemical Engineering, Purdue University

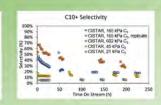

GOALS

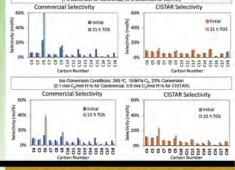

- Select Thrust 2 CISTAR oligomerization catalysts that show promising performance in low-conversion experiments, assess at high conversion and long time-onstream (>1 week)
- · Determine product slate produced at high conversion and over long time-on-stream




MAIN FINDINGS

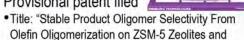

CISTAR-developed small-crystallite MFI zeolite catalyst SL1-070 displays significantly higher rates and product stability compared to commercial catalyst





OUTCOMES

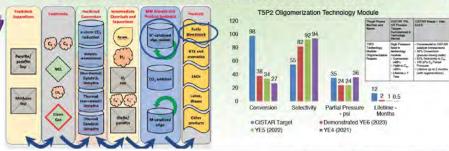
 Small-crystallite MFI zeolite oligomerization catalysts may show promise in commercial applications



 In collaboration with Dr. Kentämaa at Purdue, detailed GCxGC/FID and EI-TOF composition analysis of the liquid product can yield estimates of fuel and/or chemical quality

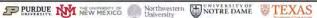
IP & INNOVATION

Provisional patent filed



- Filing number: 63/445,206
- Filing date: Feb 13, 2023

Zeotypes"


· For more information on the provisional patent, please see Peter Keeling

SYSTEM DESIGN & BENCHMARKS

- The technology module connects fundamental research from Thrust 2 with the overall goals of the Testbeds. advancing the TRL of Thrust 2 projects
- ·Similar experiments are planned on other promising Thrust 2 catalyst technologies. such as core-shell and additional smallcrystallite samples

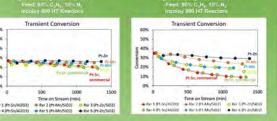
Reactor Dehydrogenation Technology Module- POSTER #32

T5P3 Poster #: 32

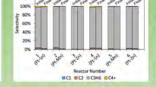
Technology Module – Dehydrogenation Reactor Propane Dehydrogenation: Comparison of CISTAR Catalysts

NSF Engineering Research Center Center for Innovative and Strategic Transformation of Alkane Resources

Evan Sowinski, Fabio Ribeiro Charles D. Davidson School of Chemical Engineering, Purdue University

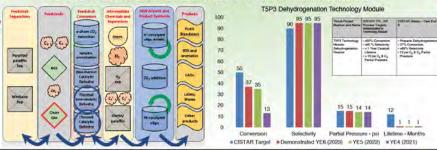

GOALS

- Comparison of CISTAR catalysts to commercial catalysts at high conversion and industrial-like WHSV
- Determine selectivity and stability with time-on-stream



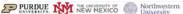
MAIN FINDINGS

CISTAR-developed Pt-Mn/SiO, and Pt-Zn/SiO, propane dehydrogenation catalysts displayed greater stability compared to a commercially available Pt-Sn/Al₂O₃ catalyst


OUTCOMES

- ·All catalysts showed similar performance at 500 °C
- ·CISTAR developed Pt-Zn and Pt-Mn catalysts showed enhanced stability at 550 °C
- CISTAR Pt-Zn catalyst showed great stability even at temperatures as high as 600 °C
- At 600 °C, selectivity was less ideal than at lower temperatures
- •Temperatures higher than 550 °C caused severe coking in stainless steel reactors, so quartz was used for 600 °C experiments

IP & INNOVATION

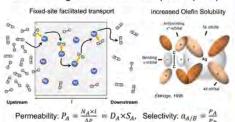

Pt-Zn/SiO2 catalyst in particular displays great stability for ~24 hours at temperatures up to at least 600 °C, compared to a commercially available Pt-Sn/Al₂O₃ catalyst

SYSTEM DESIGN & BENCHMARKS

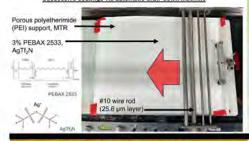
- ·Continued testing and comparison of CISTAR catalysts to commercial
- Modification of the technology module unit as necessary to allow for expanded reaction conditions, namely changing reactor material of construction to lessen coking at elevated temperatures

T6P1 - POSTER #33

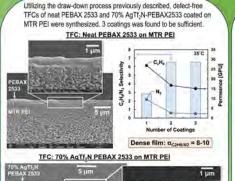
Scalable and Hydrogen-stable Thin Film Composite Membranes for Olefin/Paraffin Separations

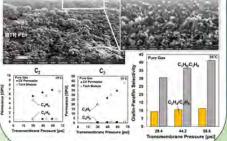

NSF Engineering Research Center

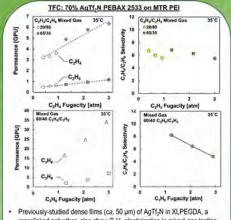
Matthew N. Davenport¹, Tanggiumei Song¹, Joan F. Brennecke¹, and Benny D. Freeman¹ ¹John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin

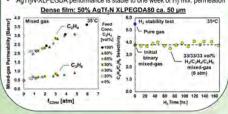

Center for Innovative and Strategic Transformation of Alkane Resources

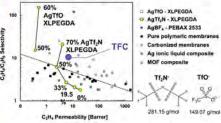
GOALS


- Ag+ facilitated transport membrane with high olefin-paraffin selectivity and resistance to poisoning by reducing gases, such as H2.
- · Mixed gas testing in technology module
- Scalable high-flux thin film composite (TFC)

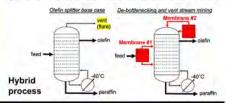



Successive coatings via automatic draw-down machine


MAIN FINDINGS



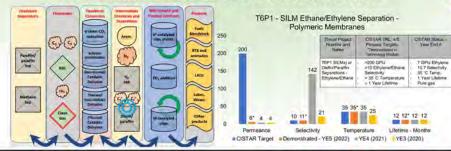
crosslinked polyether, also show C.H. plasticization in mixed-gas testing AgTf₂N-XLPEGDA performance is stable to one week of H₂ mix, permeation



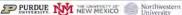
OUTCOMES

- Defect-free AgTf₂N-PEBAX 2533 TFC
- Mixed-gas C₂H₄/C₂H₆ and C₃H₆/C₃H₈ testing on CISTAR technology module
- Selectivity surpasses C₂ upper bound
- Demonstrated stability to H₂ and C₂H₂.

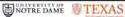
- 70% AgTf₂N-PEBAX2533 TFC shows lower pure-gas C₂ selectivity than dense 70% AgTf₂N-XLPEGDA film potentially due to substructure resistance
- Techo-economic analysis shows C2H4/C2H6 Selectivity (QC2H4C2H6) = 10 would be feasible for a hybrid membrane-distillation process (Motelica, et al., 2012)



IP & INNOVATION


- H₂- and C₂H₂-stable Ag⁺ facilitated transport membrane with good selectivity (patent filed)
- Defect-free AgTf₂N-PEBAX 2533 TFC coating for scale-up and mixed-gas testing

SYSTEM DESIGN & BENCHMARKS

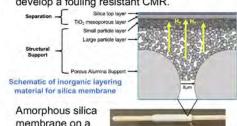


- The TFC morphology is readily scalable into pilot-scale spiral-wound modules
- Development of TFC membranes with other Ag salts to improve a and H2-stability testing
- . Optimization of support membrane to reduce sub-structure resistance
- . Testing of 'live' mixed-gas sample from partner plant on CISTAR technology module

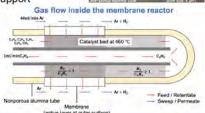
T6P2 - POSTER #34

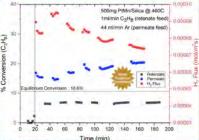
T6P2

Strategies for Mitigating Membrane Fouling Via Coke Poster #34 Formation During PDH in a Catalytic Membrane Reactor

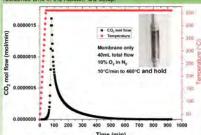

Center for Innovative and Strategic Transformation of Alkane Resources

Isabel Ibarra1, Ryan Alcala1, Ayrton Jordan1, Aiden Littleton1, Hiroki Nagasawa2, Abhaya Datye1, C. Jeffrey Brinker1 Department of Chemical & Biological Engineering and the Center for Micro Engineered Materials, The University of


²Chemical Engineering Program and Graduate School of Advanced Science and Engineering, Hiroshima University


GOALS

- · Develop and integrate a thermally stable, high flux membrane for the selective removal of H2 from C2-C5 alkanes in a high temperature catalytic membrane reactor.
- · Modify or substitute membrane components to develop a fouling resistant CMR.


membrane on a porous alumina support

PDH reaction at 460 °C and 1mL/min propane feed. Conversions above equilibrium conversions can be seen on the permeate side.

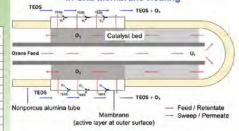
A transient reaction can be observed in the first 20 min due to a long nce time in the reactor/ GC setup

Temperature programmed oxidation performed on the membrane after seeing 10% C₃H₈ in N₂ for 17.3 hrs at 460 °C. Approximately 2mg of coke came off in the form of CO2.

MAIN FINDINGS

Sample	Surface Area m²/g	Coke wt%	g C/m²
Bare α-Al ₂ O ₃ (200 nm)	7.01	0.103	1.47E-04
1wt% Sr on a-Al ₂ O ₃ (200 nm)	7.01	0.113	1.64E-04
10wt% Sr on a-Al ₂ O ₃ (200 nm)	7.01	0.069	9.87E-05
Davisil 646 (amorphous)	277.86	0.025	9.15E-07
Quartz Sand	2.44	0.0005	2.11E-06

and Sr modified a-alumina particles, Davisil 546(amorphous silica), and quartz sand

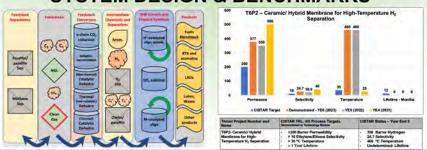


Aerosol assisted EISA mesoporous silica films. Top image from 2023 and bottom image from 1999 (Lu et al)

OUTCOMES

- Above-equilibrium conversions can be obtained
- Provides promising platform for tandem catalysis
- · Mapped out material modifications and substitutions that can be made to prevent fouling.
- Redox cycling generates defects. Defects can be healed by secondary membrane formation.

In Situ Membrane Healing



IP & INNOVATION

- Provides a unique platform for tandem catalysis to further improve conversion and reduce need for separation
- Patent application in progress

SYSTEM DESIGN & BENCHMARKS

IMPACT & FUTURE

- CMR reduces needed energy input for a given conversion
- Reduction of membrane fouling increases the time between regenerations.
- Tandem catalysis offers to provide a direct route for propane to liquid fuels
- In Situ membrane healing.

Bare, 1 wt%, 10wt% Sr on

Davisil 646 & Quartz sand

Blank Anodisc 1

Spray Sample 4

Spray Sample 5

Spray Sample 6

Spray Sample 7 *

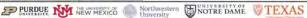
(MPU) 528.24

525.81

549.51

553.45

126.24 176.04


398.40

388.79

395.67

1607.18

T6P3 - POSTER #35

Improving the Pressure-Stability of Supported Ionic Liquid Membranes (SILMs) for the **Fractionation of Light Paraffins**

Justin J. Rosenthal¹, Joan F. Brennecke¹, Benny D. Freeman¹ ¹ John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin

Center for Innovative and Strategic Transformation of Alkane Resources

GOALS

- > Light paraffin fractionation with reverse-selective supported ionic liquid membranes (SILMs)
- > Membrane stability (i.e., "blowout resistance") at industrial operating pressures of 7-30 bar
- > SILMs suitable for large-scale manufacturing and incorporation into low-footprint modules for decentralized natural gas processing

Benefit of Reverse-Selectivity

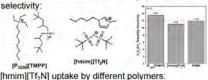
Solubility-selective ionic liquids (ILs) are reverseselective which helps to avoid costly recompression

Size-Selective Reverse-Selective GH,-rich stream 7-30 bar 7-30 bar

Supported Ionic Liquid Membrane Synthesis

MAIN FINDINGS

Limitations of SILMs Plasticization of the support by the IL and high operating


pressures are common challenges

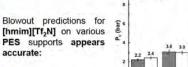
The IL can swell the polymer support if their interactions are too favorable

Selection of IL and Polymer Support ILs were chosen based on their C3H8/CH4 ideal solubility

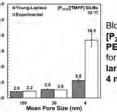
Liu et al., Ind. Eng. Chem. Res., 53, 363-368, (2014)

Predicting Blowout Pressures

The Young-Laplace (YL) equation is a helpful predictor of possible operating conditions:

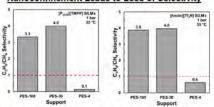

 $P_C = \frac{2\gamma \cos(\theta)}{}$

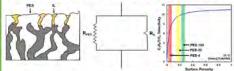
accurate:


P = Blowout Pressure (Pa) y= Surface Tension (N/m) θ = Contact Angle (radians)

r= Pore Radius (m)

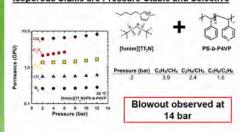
Want high surface tension, low contact angle, and small pore radius for highest blowout (i.e. operating) pressure


Mean Pore Size (nm)


Blowout predictions for [P2228][TMPP] on various PES supports is accurate for larger pores. There is a large deviation with the 4 nm support:

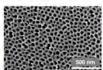
OUTCOMES

Nanoconfinement Leads to Loss of Selectivity



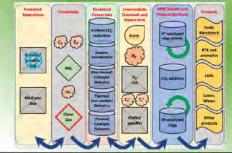
Low Surface Porosity Hinders Propane Transport

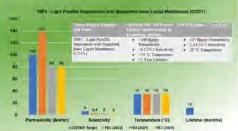
Henis, J.; Tripodi, M. J. Memb. Sci., 1981


Isoporous SILMs are Pressure-Stable and Selective

IP & INNOVATION

- Most stable SILM utilizing commercially available supports
- . Isoporous SILMs provide the necessary pressurestability and reverse-selectivity for this separation




SYSTEM DESIGN & BENCHMARKS

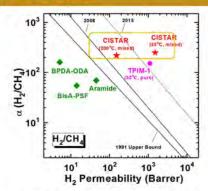
PES

shows

lowest IL uptake

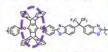
- Evaluation of the IL interactions with the support are necessary for a stable SILM
- Nanoconfinement can improve stability but leads to a loss in reverse-selectivity
- Isoporous SILMs offer both good pressure-stability and the desired reverse-selectivity
- · Future: Characterize isoporous SILMs with [hmim][Tf2N], [P2228][TMPP], and [emim][SCN]
- Future: Develop poly(ionic liquid) membranes

T6P4 - POSTER #36


Microporous Iptycene-based Polybenzoxazole Membranes for H₂/C₁-C₃ Separations

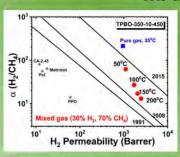
NSF Engineering Research Cente Center for Innovative and Strategic

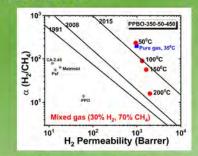
Agboola Suleiman, Zihan Huang, Ruilan Guo Department of Chemical & Biomolecular Engineering, University of Notre Dame

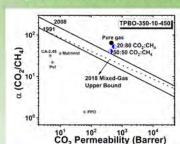

Transformation of Alkane Resources

GOALS

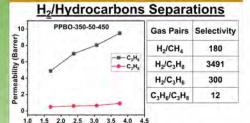
- · Develop polymeric membranes tailored for H₂/C₁-C₃ separations.
- · Investigate their performance with increasing temperatures (up to 200°C).
- · Hypothesis: Iptycenes should minimize selectivity losses at high temperatures due to their configuration-free volume.



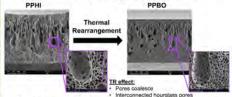

Triptycene PBO (TPBO)


Pentiptycene PBO (PPBO)

MAIN FINDINGS


- The Iptycene PBOs have exceptional performance at 35°C for single gas. Both polymers show a similar performance α (PPBO) > α (TPBO).
- High selectivities at 200°C for binary gas mixtures confirm the hypothesis.

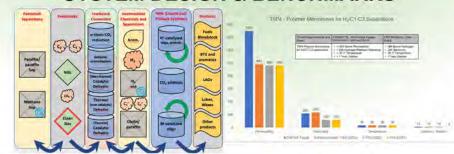
Iptycene units mitigated the selectivity losses at high temperatures - configuration free volume are less sensitive to the high temperatures. Excellent plasticization resistance in mixed-gas conditions for CO2.


OUTCOMES

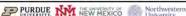
PPBO shows promising selectivities for C₃H₆, C₃H₈, and CH₄.

Asymmetric membrane fabrication

complex process: simultaneous occurrence of different mechanisms on membrane morphology & performance.


 An optimum dope composition that gives similar dense film selectivity is being studied

IP & INNOVATION



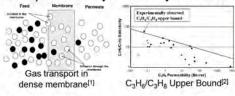
· Developing first-of-its-kind high-performance polymer membranes for separations up to 200°C.

SYSTEM DESIGN & BENCHMARKS

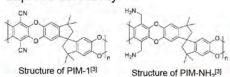
- Better heat integration of CISTAR process and separation conditions.
- Promising performance for H₂/C₃H₆, H2/C3H8.
- Asymmetric fabrication of these materials is ongoing.
- Novel non-fluorinated materials are being investigated.

T6P6 - POSTER #37

T6P6 Poster #: 37


Olefin/Paraffin Separation Performance of Amine-modified PIM-1 Membrane

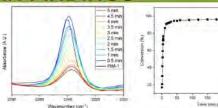
Bo Wei Cynthia Chen1, Casey P. O'Brien1 ¹Department of Chemical and Biomolecular Engineering, University of Notre Dame



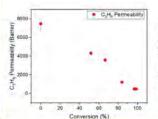
GOALS

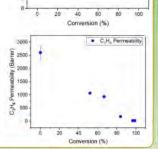
- Gas separation using polymeric membrane reduce energy consumption
- Simple polymeric membrane suffer from permeability/selectivity trade-off

- Polymer of Intrinsic Microporosity (PIM) are known for high permeability
- Modification of polymer design can improve selectivity

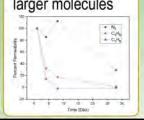


Reference. [1] Farsi, A. (2015). Mass transport in inorganic

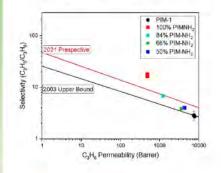

MAIN FINDINGS


C₃H₄/C₃H₄ Selectivity

- Synthesized of PIM-NH₂ confirmed using FT-IR
- · Reaction is controlled to produce PIM-NH2 at different conversions

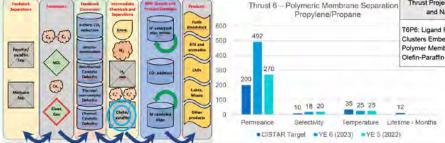


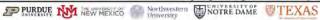
- · Permeability has a linear relationship with total amine conversion
- Selectivity is inversely effected by amine



- Membrane aging is observed at initial testing day
- · Nitrogen tested as comparison showing slower aging than larger molecules

OUTCOMES


- C₃H₆/C₃H₈ separation performance using PIM-NH₂ is above upper bound
- Gas separation performance can be optimized by manipulating polymer design
- · Fast membrane aging occurs during initial time period



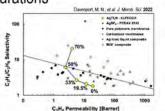
- PIM-NH2 is a promising novel material for high efficiency separation
- · Characteristic study of PIM-NH2 to understand gas transport and separation properties

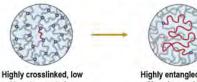
SYSTEM DESIGN & BENCHMARKS

- Thrust Project Number CISTAR TRL. 4/5 Process Targets. and Name T6P6: Ligand Protected 18 Propylene/Propane Clusters Embedded in 10 Propylene/Propane Selectivity Polymer Membranes for 35 °C Temperature Lifetime study in progress
 - Fundamental study polymer property to optimize gas separation efficiency using molecular design
 - Aging mitigation study in the future

T6P7 - POSTER #38

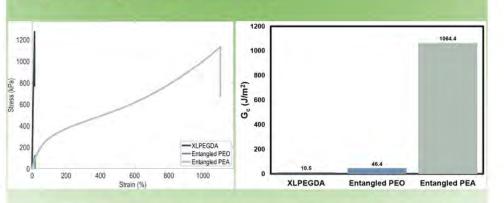
Engineering Mechanically Tough Poly(ethylene oxide) Membranes for Olefin/Paraffin Separations


Tiffany Jeng¹, Gabriel E. Sanoja¹ ¹McKetta Department of Chemical Engineering, The University of Texas at Austin

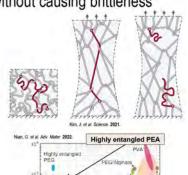

MAIN FINDINGS

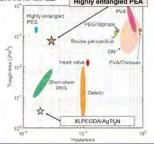
GOALS

- · Engineer polymer membranes of high fracture toughness
- Understand the relationship between membrane structure and bulk mechanical and transport properties for olefin/paraffin separations



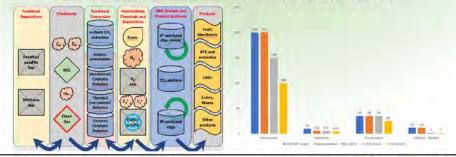
M_n polymer chains Nian, G. et al. Adv. Mater. 2022


Highly entangled, high M. polymer chains


- XLPEGDA/AgTf₂N membranes are stiff $(E \sim 10 \text{ MPa})$ and brittle $(G_c \sim 10-100)$ J/m^2
- Highly entangled polymers yield elastic, yet tough membranes

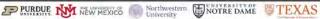
OUTCOMES

- Alternative polymer network architectures toughen membranes
- Entanglements dissipate energy without causing brittleness



IP & INNOVATION

· Molecular understanding of the mechanical properties of PEO/AgTf₂N membranes


SYSTEM DESIGN & BENCHMARKS

- Longer-lasting, mechanically tough membranes
- PEO/AgTf₂N requires refined molecular design
- Toward highly entangled polymer membranes utilizing alternative chemistries

